

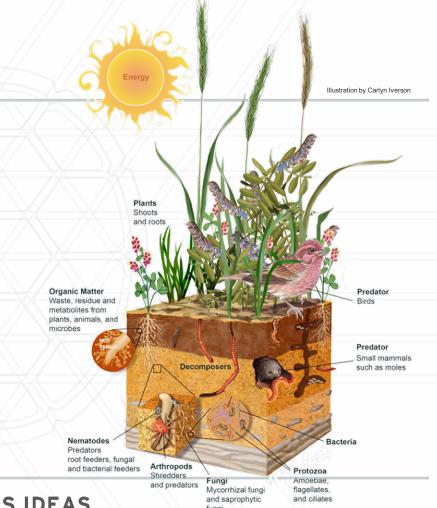
#### Soils 101

Erika Crowl | Fundamentals of Nutrient Management Slides adapted from Andrew Kness and Emileigh Lucas



UNIVERSITY OF MARYLAND EXTENSION

# **Objectives**


- What is soil and how is it formed?
- Soil physical properties
- Soil chemical properties
- Describe tools for accessing soil survey

#### What is soil?

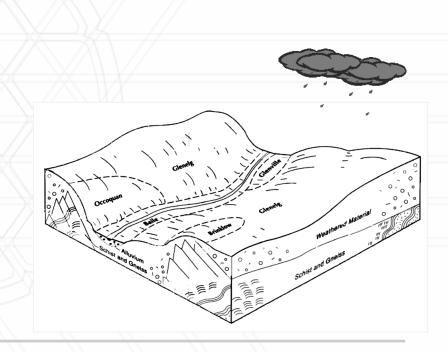
Soil is a natural body comprised of solids (minerals and organic matter), liquid, and gases that occurs on the land surface, occupies space, and is characterized by one or both of the following: horizons, or layers, that are distinguishable from the initial material as a result of additions, losses, transfers, and transformations of energy and matter or the ability to support rooted plants in a natural environment (Soil Taxonomy, 2<sup>nd</sup> Edition).

#### What's in soil?

- Minerals
- Water
- Gas
- OM
- Plants
- Animals
- Microbes

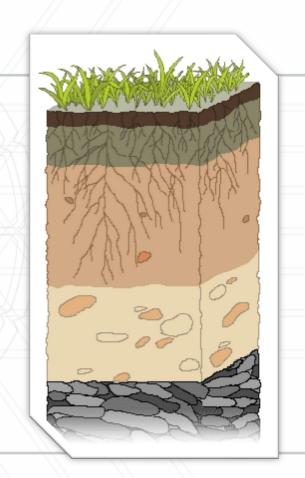





#### It's a whole other world!

There are more soil microorganisms in a teaspoon of healthy soil than there are people on the earth!




#### Five soil-forming factors:

- 1. Parent material
  - a) Rocks and Minerals
- 2. Climate
- 3. Landscape position
- 4. Organisms
- 5. Time



#### Parent material

- The material in which soils form
- Very few soils form directly from underlying rock



#### Climate

- Precipitation
  - Affects weathering of parent material
- Temperature
  - Increase in temps increases biological activity and chemical reactions
  - Freeze-thaw process weathers parent material



#### Landscape position

- Slope
  - Soils on slopes are subject to erosion
  - Soils at bases of slopes tend to have more topsoil and organic matter
  - Soils at bottom of slopes or formed under little slope will have greater water infiltration
- Slope direction
  - South-facing slopes warm up faster



#### Organisms

- Animals
  - Move and travel over soil
  - Move and travel in soil
- Plants
  - Roots break up soil
  - OM affects soil properties
- Microbes
  - Decompose OM
  - Cycle nutrients
  - Travel through soil





#### Time

 Soil formation takes a lot of time!



#### Four soil-forming processes:

- 1. Addition-material added to soil
- 2. Loss-material lost from soil
- 3. Translocation-material is moved to another part of the soil
- 4. Transformation-materials are changed into another form in the soil



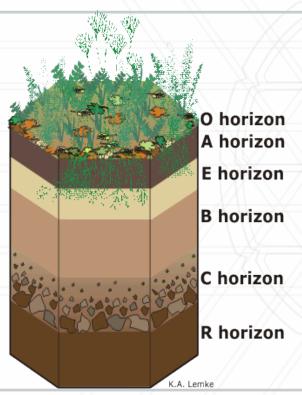
# Soil organic matter

Plant, animal, and microbe debris in various stages of decomposition

- Biomass-living component
- Residues and by-products
- Humus-stable end product of OM decomposition






# Soil organic matter

SOM only comprises 2-5% of soil by weight, but has a **huge** impact on soil properties

- Higher water-holding capacity
- Increased water infiltration
- Higher CEC and greater ability to hold nutrients
- Improves soil structure



# Soil profile

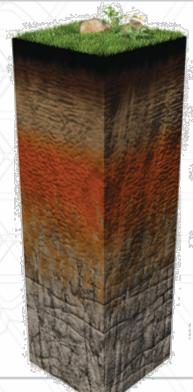


#### Soil Horizons

- O: Organic Horizon
- A: Mineral and organic components mixed
- E: Eluviated horizon loss of clays, Fe, Al
- B: Illuvial accumulation of clays, Fe, Al, OM
- C: unconsolidated bedrock
- R: hard bedrock



# Soil profile




WARYLAND

Photo: NRCS



Photo: NRCS



A (topsoil)

B (subsoil)

C (parent material)

FEARLESS IDEAS

- Physical properties
- Chemical properties

#### Physical properties

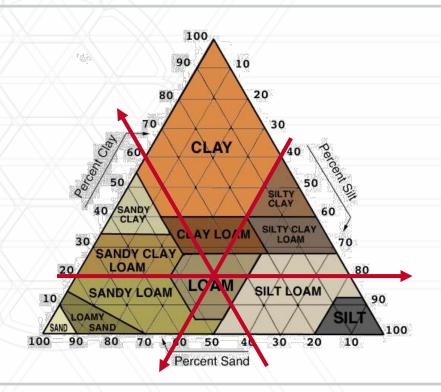
- Texture
- Structure
- Porosity
- Bulk density
- Water-holding capacity



SOM does not affect texture.

Management practices have no effect on texture.

#### **Texture**


- Soil texture refers to the proportion of the soil "separates" that make up the mineral component of soil
  - % sand, silt, and clay

| Mineral class | Size of particle | Feel of particle     |  |
|---------------|------------------|----------------------|--|
| Sand          | 0.05 – 2 mm      | Gritty               |  |
| Silt          | 0.002 – 0.05 mm  | Flour, talcum powder |  |
| Clay          | < 0.002 mm       | Sticky when wet      |  |

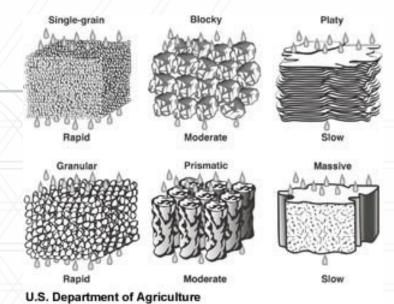


# Textural triangle

What's the texture of a soil that's: 40% sand, 40% silt, and 20% clay?






#### Effect of Soil Texture on Soil Properties

|                             | coarse<br>textured | medium<br>textured | fine<br>textured |
|-----------------------------|--------------------|--------------------|------------------|
| water-holding capacity      | low                | moderate           | high             |
| nutrient retention capacity | low                | moderate           | high             |
| leaching potential          | high               | moderate           | low              |
| susceptibility to erosion   | low                | high               | moderate         |



#### Structure

 How soil separates are aggregated together to form peds



 Soil structure determines pore space

# SINGLE GRAIN Composed of largely nonroughly uniform size

reactive sand size particles of distribution.

# **GRANULAR**

Predominantly the result of biological forces including: earthworms, insects, fungal hyphae, and fine roots.

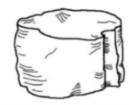
#### BLOCKY



Developed through cycles of shrink-swell. Size defined by boundaries in homogeneous matrix (i.e. root patterning). Most common to soils with rapid drying.

#### PRISMATIC




Uniform shrinkage after extended periods of saturation. Most common in uniformly textured soils, enriched with sodium, that slowly dry.

#### PLATY



Generally occur through unidirectional compressional forces. Most commonly produced in surface soils compressed by heavy equipment.

#### MASSIVE



Common in fine textured sediments that are slowly sorted and cemented (argillinc), manufactuired (clay barriers), or compressed (fragipan).

Images courtesy of the U.S. Department of Agriculture



#### Structure

- SOM plays a big role in soil structure
- Management practices can greatly affect soil structure

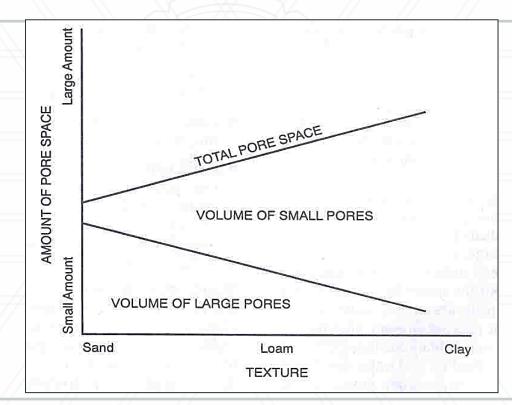





Photo: soilplanttech.com

# Porosity

- Space in between peds and particles
  - May be occupied by air or water

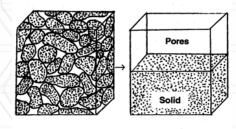


# Formula for porosity

% PORE SPACE = 100 - % SOLID SPACE

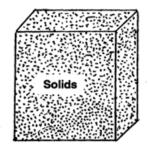
OR

% PORE SPACE = 100 - (BD/PD X 100)




# Bulk and Particle Density

- Two kinds of Density
  - Bulk density is the weight of soil in a given volume
  - Particle density is the weight of soil solids only


#### **Bulk Density**

- Affected by porosity
  - More porous soil = lower bulk density
  - Compacted soils will have a bulk density >1.6g/cm<sup>3</sup>



#### **Bulk Density**

50% solid, 50% pore space Weight = 1.33 g Volume = 1 cm<sup>3</sup>



#### Particle Density

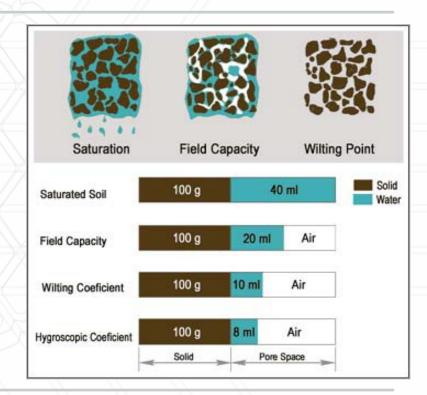
100% solid Weight = 2.66 g Volume = 1 cm<sup>3</sup>

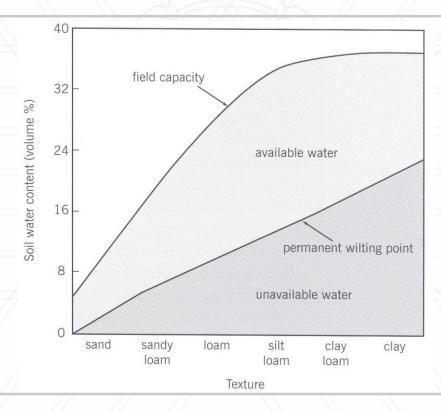
passel.unl.edu



If a soil ped has a volume of 124 cm<sup>3</sup> and a dry weight of 138 grams, what is its bulk density?

BD = 138 grams/124 cm<sup>3</sup> ➤ 1.11 grams/ cm<sup>3</sup>


#### Water-holding capacity


- Affected by:
  - Porosity
    - More micropores = more water-holding capacity
  - Soil texture
    - More clay = more water-holding capacity
  - Soil organic matter
    - More SOM = more water-holding capacity



# Water-holding capacity

- Saturated
- Field capacity
- Permanent wilting point

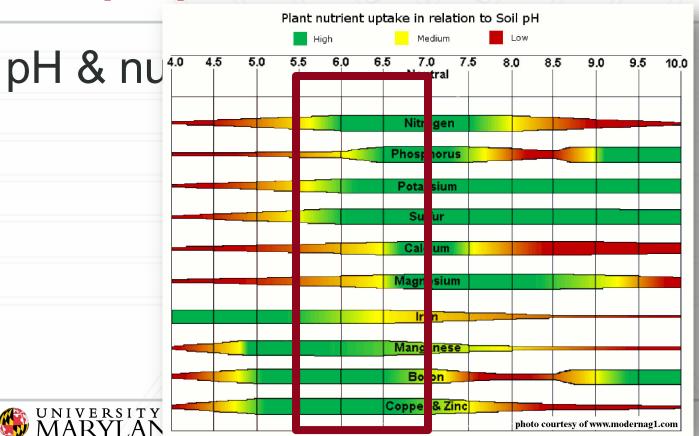




## **Soil Drainage**

- The rate and extent of water removal during the growing season.
- Indicated by soil color patterns and color variations.

## Chemical properties


- pH
- Cation exchange capacity (CEC)
- Anion exchange capacity (AEC)



#### рН

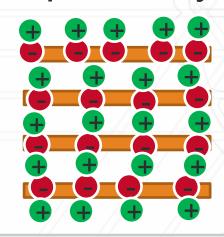
- Soil pH is a measure of the acidity and alkalinity in soils
- pH between 5.5-7.0 required for most plants
- pH affects the availability of nutrients in the soil
  - pH also affects the availability of toxic metals in the soil

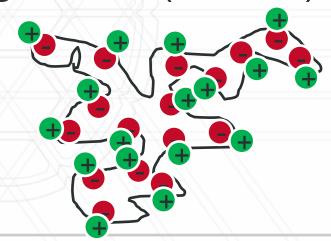




#### Adjusting soil pH

- Most soils are naturally acidic and will become more acidic over time
- Limestone is added to soil to adjust soil pH up to a more acceptable range
  - Calcitic limestone (CaCO<sub>3</sub>)
    - Also a source of calcium
  - Dolomitic limestone (MgCO<sub>3</sub>)
    - Also a source of magnesium





#### Cation exchange capa

The ability of soil to positively charged ic

#### **Cations**

- Calcium (Ca<sup>2+</sup>)
- Magnesium (Mg<sup>2+)</sup>
- Potassium (K<sup>+</sup>)
- Sodium (Na<sup>+</sup>)
- Ammonium (NH<sub>4</sub><sup>+</sup>)
- Aluminum (Al<sup>3+</sup>)
- Hydrogen (H<sup>+</sup>)





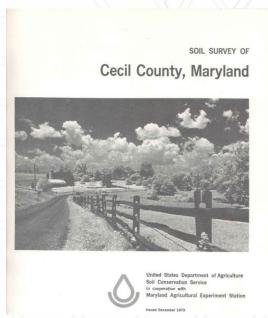
### Effect of CEC on soil properties

#### Low CEC (1-10meq/100g)

- High sand and low clay content
- Low OM content
- Low water- holding capacity
- Low soil pH
- Low productivity
- Easy to change pH



## **Effect of CEC on soil properties**


#### High CEC (11-50 meq/100g)

- Low sand and higher clay content
- Moderate to high OM content
- High water- holding capacity
- Less nutrient losses to leaching than low CEC soils
- Harder to change pH



# **Soil Survey**

#### From this....




#### ....to this



# **Soil Survey**

- Basic soil properties
  - > HSG
  - Permeability
  - ➤ K erodibility
- Applied soil use
  - vegetative productivity
  - water management
  - > land management

Thousands of bits of info!





#### **Erika Crowl**

Agriculture Extension Agent 410.887.8090 | ecrowl@umd.edu